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ABSTRACT OF THE PRESENT REPORT

Part I gives a formal proof for a well-known statement of Shannon.

Shannon states that for very large T, the number of distinct permissible

T
messages of length T behaves as A r. , where r. is the largest positive1 1 1

root of the characteristic equation. It is proved here that the character-

istic equation cannot posses complex conjugate roots leading to a dominant

term.

Part II presents a note on a new sampling theorem using Bernstein's

orthogonal polynomials as the basis. Some similarity between the problem

of approximation with B n(t) and the fundamental theorem of information theory

is denoted.

Part III contains a new relation between positive real functions of

Circuit Theory and the h(p) functions of Reliability Theory. A mathematical

transformation is described for associating a realizable impedance function

to a realizable realiability function. This idea provides a new source of

constraints for realizable reliability functions.

Part IV contains merely the formulation of a new problem concerning

"nearly normal channels" and the evaluation of their information transmission.

(4,



ABSTRACT OF AFCRC-TN-59-588---BASIC CONCEPTS OF INFOFMATION THEORY

FINITE SCHEME

The report presents basic concepts of information theory in the light

of set theory and probability. The derivation of the functional form of

the entropy function is given and its properties are discussed in detail.

The report also gives a set theory interpretation of Shannon's Fundamental

Inequalities, for entropies of more complex systems. The concept of channel

capacity is discussed in detail with examples of BSC and BEC.

(iii)



ABSTRACT OF AFCRC-TR-60-126---STUDY OF SYSTEM RELIABILITY

This report discusses continuous channels without memory. It describes

a measure of information in the continuous channels and the maximization of

the entropy under reasonable circumstances. In particular, the transmission

of information in presence of additive noise is formulated and Shannon's

well-known formula for Gaussian formula channels derived.

(iv)



ABSTRACT OF AFCRL 503--THREE PROOFS FOR THE FUNDAMENTAL

THEOREM OF INFORMATION THEORY DISCRETE MEMORYLESS CHANNELS

This report considers the fundamental theorem of information theory

for discrete memoryless channels. Subsequent to some preliminary preparations,

describing the decision scheme and average error probability, three proofs

of the basic theorem are presented

Feinstein's Proof,

Shannon's Proof,

Wolfowitz's Proof.

A discussion of the bounds of error probability and their relations to the

word length and the converse of the fundamental theorem is included.

(v)



SUMMARY AND ANALYSIS OF RESEARCH UNDER THE CONTRACT

The project began with the study of the reliability in communication

systems. In retrospect, it can be seen that the research under the contract

has assumed two parallel aspects, one based on probabilistic studies and

the other based on information theory ideas.

Information Theory predicts the possibility of the most reliable trans-

mission of information. In this context, our studies were directed toward

a clear understanding of basic concepts of information theory. Subsequent

to such studies one is enabled to clearly analyse the rate of the transmission

of information of simple channels, the associated errors and reliability

(Technical Reports 1 and 5).

In connection with Probabilistic Networks per se, we have analyzed some

of the existing literature and promoted a new question. Namely, what are

the necessary ana sufficient conditions for an h(p) function to represent

the reliability of a realizable network. Several Master's and Doctoral

candidates were guided in this area. Although, they have produced a number

of interesting results, this particular problem still remains unsolved.

Some discussion of interest is presented in Part III of this final report.

As a junction of the above two directions we came across a new form of

a sampling theorem with potential applications to both of these areas. This

theorem and its ramifications are discussed in Part II of this report.

As far as the further future work in this area is concerned, the analysis

and synthesis of probabilistic networks requires far more attention. Also,

the study of nearly gaussian channels and their reliability warrants special

investigation.

(vi)



Part I

A NOTE ON TE CAPACITY OF DISCRETE NOISELESS CHANNELS

At the very beginning of his well-known paper, Shannon considers the

transmission of information through a memoryless discrete noiseless channel.

A memoryless source selects symbols, at random from a specified alphabet

[al, a2, . . , an]

Each transmitted symbol goes through a noiseless c:hannel without alteration,

but has a duration or cost factor assigned to it. The costs of different

symbols are prespecified by a matrix such as

[tlI t2 . . 9 tn

Sequences of symbols (called message) are selected by the source with some

possible restrictions. We may specify for instance that words of the type

a a are not to be transmitted. For example, in the ordinary telegraphy,

the source is required to omit repetition of spaces. The question exposed

and answered by Shannon is how one can measure the capacity of such a channel.

Shannon defines the capacity of this channel as

C = lim log N(T)

T

where N(T) is the number of permissible messages of total duration or cost

T. This maximum rate of the transmission of information may be only ob-

tained when all the distinct messages arc equiprobable.

The evaluation of N(T) requires the solution of the following well-



2

known difference equation
1'2

n
N(T) y, N(T - tk )

k=l

When all symbol costs are distinct, then the solution to this difference

equation is

n

N(T) = Z AkrkT
k=l

where A ks depend on the boundary values of the problem and rk s are the

roots (distinct) of the characteristic equation

n -tk
1 = Z r

k=l

When several symbols may be of the same duration, then we may conveniently

rearrange the order of appearance of the symbols in the cost matrix to read:

I [t1, It2 ], ., [tim ] 

I al) m2, ' m]

m
tl< t2< . .. < t a. > 0, Z a,. = n
1 2 m j=l J

where a. is the number of symbols of length t.. Under these conditions

the characteristic equation of the difference equation

m
N(T)= E ck N(T - tk)

k=1

becomes

m -tk
1= X kkr

k=l
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The boundary condition can be derived from the equation:

N(t < t1 ) = 0

The principal problem under investigation here is the determination

of lim - N(T), when T is increased beyond any limit. For such infinitely
T

large values of T, the function N(T) behaves as Air i where r. is the

largest positive root of the characteristic equation. Of course, it is

not apparent that the characteristic equation does not possess a pair of

T T
complex conjugate roots r. and r j+ such that Ajr.T + A +lrj+ 1 and not

T
A.r. is the dominant term.

The truth of the matter is that in both general cases cited before the

root of the characteristic equation with largest magnitude is a positive

one. The limit of N(T) for large T, thus approaches A~r.T without any
1 1

concern that the contribution of the complex roots r. and rj+ 1 may provide

a dominant term.

While the validity of this statement has been unanimously recognized

(for instance see Ref. 1,2,3,4,5),a complete proof may not be readily

accessible in the literature.

In the following we proceed to fgive a proof for these statements

in both cases. The suggested proof is not restricted to the case where

all tk1s are positive integers. It will be shown that the positive real

root of the characteristic equation is the root with the largest magnitude.

This seems to be a stronger statement than those which have appeared

earlier in the edited references. Furthermore, the method of proof out-

lined below may be of additional interest for solving analogous problems.



The characteristic equation

m
1. r-ti

1- Y i 1 1

i=l

leads to an equation of the form

F(x) =m "  m' -kI  m- k2  m" - k

t
0where x = r and t is the greatest conmmon divisor of ti s. Now, the

following main theorem can be stated.

Theorem: Consider the equation

Fx m "  m"-k 2  m" - k
F(x)=x - 1x 2- O. n = 0

where > 0 j= 1, 2, ...,n n < m'

and all Pi's vanish simultaneously.

The equation has a unique positive root rI > 0; the magnitude of any

other root of this equation is not larger than r1.

Proof The following proof is based on the work of A. M. Ostrowski (Ref. 6).

Let {1, 2, ... , OnI be the sequence of all positive coefficients

ordered according to their indices, that is:

l<k < k2 <. . . <k <im'

There exist n integers sl s2.' . s such thatn

sk + k + . . . +s Sn 1
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Now F(x) can be rewritten as W(x). xm where

1 1 2 + n
(O) k i - +  k+ .. . .. . -k)

x x x

The function O(x) is monotonically increasing in the range 0 < x < c0

We note that 0(-) = + 1 and O(o) - - .. Therefore, O(x) will vanish

exactly for one positive value of x say x = x . (Note that x 1 > 1).

Since, (xI) > o, it is concluded that the root x cannot be a multiple

root.

It is not apparent i-)wever, if the magnitude of this root is not

smaller than the magnitude of any other root. To this end, let x2 be

any other root of the characteristic equation. Then

l +n i P n

x2 x2 n 21 Ix21 n

Thus 0 (1x 2 1) < 0. Now it becomes clear that if O(Ix 2 1) < 0 then 1x2 1 < x1 .

If O(Ix 2I) = 0, then the following expression must be positive as it consists

of factors which are all positive by virtue of the assumed relation

1 3 1 13 s 2  
n

(L-k (--k) '2-k) n . . . n_ > 0

IX21 Ix2 12 Ix2 In

Therefore Ix2 1 must be also positive. This is in contradiction with the

proven fact that the equation has exactly one positive root, unless for

negative or complex roots having the same magnitude as xi, that is Ix2 1 = x 1 .

In the light of this theorem, it becomes clear that when T becomes
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exceedingly large, the dominant term of N(T) consists solely of terms

containing roots whose magnitude are equal to the magnitude of the largest

root. Of course, these roots may be complex conjugate pairs or even negative

real. Due to the realness of N(T), a pair of conjugate roots contribute

a real term of the form

T .* . T

Akrk + Ak rk = A'kIrki

T
Thus, the dominant term will be of the form AoIrk where A 0 may contain

a contribution of negative or complex conjugate roots. But at any rate

A0 cannot be negative. This leads to Shannon's well-known result that:

01

0= lim 1 log N(T) = logirk!
T-T
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Part II

A NOTE ON A SAMPLING THEOREM

The impact of the so-called sampling theorem is quite well-known

to most communication engineers. In its simplest form, the theroem states

that: a signal whose Fourier integral transform is limited to the frequency

band of + 0 cps, is completely determined by its sampled values at the

intervals A/w0 seconds apart starting from the origin.

The sampling theorem has been extensively used in communication

theory in a variety of forms. For example, we know that the sampling

intervals may not necessarily be chosen with equal length. The knowledge

of the value of the signal at an instant may be traded for an equivalent

information about the derivative of the signal. Furthermore, the theorem

may be extended from a one-dimensional signal space to a multidimensional

1
signal space.

While the context of this theorem has been mathematically known

for over half a century, its introduction in communication engineering is

due to C.E. Shannon. The theorem, however, was previously known or occasionally

applied by other pioneers such as Nyquist, Kumfmflller and D. Gabor. It is due

to the efforts of these and other communication scientists that today the

sampling theorem has become a standard tool of research in communication

engineering.

The object of the present paper is to suggest another mathematically

known theorem which should prove to be, potentially, a rich source of

information in problems of communication. The theorem was discovered in

about 1912 by the famous mathematician S. Bernstein while giving another

proof to the Weierstrass's theorem.
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It is recalled that Weierstrass's theorem is one of the basic theorems

of mathematics in the field of the theory of functions of real variables.

This theorem states that any continuous function f(t) of a real variable

t in the closed interval [a,b] can be approximated by a polynoi$al P n(t)

of a specified degree n, such that for all other polynomials of degree n

we have:

Max If(t) - Pn(t)l : Max If(t) - %(t)! (1)

a<t<b a<t<b

Furthermore, for any arbitrary small e > 0, there exists a polynomial

Pn(t) (where n depends on ) such that in the interval [a,b] we have
2

If(t) - Pn (t)j < E (2)

We may note, in passing, that there is a resemblance between Weierstrass's

theorem and Shannon's fundamental theorem of information theory. The

latter theorem, in its most familiar form, states that for a given

communication system and specified error probability e, there is an

encoding-decoding scheme which leads to a transmission of information with

a rate as close to the ideal rate as desired and with an error probabiltiy

not exceeding c (for a complete statement see Ref. 1 Chapter 12). Parentbe-

tically,, one may say that Shannon's fundamental theorem, in a way, is the

counterpart of Weierstrass's basic theorem for communication sciences.

Both these theorems suggest the possibility of approaching certain ideil

behaviors with prespecified errors.

Without loss of generality, we assume that the continuous function f(x)

is defined in the interval [0,1]. Of course, any other real interval can
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can be transformed into this interval by a simple transformation. The

desired sampling theorem can be stated in terms of Bernstein's polynomials

associated with sampling of f(x) at specified intervals of length 1/n

where n > 0 is any specified positive integer and

n k n-k k

Bn~t / k -n

k=O

A graphical interpretation of the theorem for n = 8 is given in Fig. 1.

Fig. 1

The given function is sampled at integral points 0 to n. Each ordinate f(-)
n

is computed and incorporated in the sampling kernel of Eq. (3); and summed

up in order to lead to B (t). Now according to the theorem of Weierstrass

n

the limit of Bn(t) approaches f(x) uniformly in the above interval, that

n --

is,

lim Bn(t) - f(x)
n --,o

A standard proof for this theorem can be found in [3]. The following proof

is due to S. Bernstein.
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Let

(k) t k ( l " t ) n - k  (4)
kk

and note that

n

7, P k 1 (5)
k=O

Next we compute:

n n

T a 2 (k-nt)2 P k , [k(k-1)- (2nt- 1)k + n2t 2 ] Pk (6)

k-O k-O

We may consider X to be a random variable with binomial distribution (see

Ref. 1, page 234), that is,

P~X -k} k = (k) tk(l - t)n- k (7)

Thus, n

= 7 k (n) tk(l_ t)n-k ant (b)
kak=O

X = nt [(n - 1)t + 11 (9)

a = - 32 ant (1 - t) (i0)

n

7 k(k lI)Pk =X 2 - . n(n -l)t 2  (11)

k=0
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Therefore

T= n(n - 1)t 2 
- (2nt - l)nt + n2t2 = nt(l - t) (12)

Our immediate problem is to evaluate the difference:

n n

knO kzO

n

< Z If(t) _ f(k)f , (11+)

I- tI <8a

n

+ If(t)- (nfl k

ln- tI_:F

On account of the continuity assumption ;Cor every point x' such that

Ix - x'I < 6, we have If(x) - f(x')j < e. Therefore, the total deviation

in the interval In - tj < 5 cannot exceed E.

A Chebyshev's type inequality can be established for the term to the right

of the above inequality, that is,

n n

P L (nL _ t ) 2 Pk 1 T t(l t) (15)S2B nb2

Bi t e - t ) <

But in the range [0,1], we have t(l - t):5 thus,
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n k 2 (16)E 4n6
JIh- tj >6

n

From the above one concludes that

If(t) - Bn (t) < , + 2M2 (17)
4n52

where M is the largest value of f(t) in the interval [0,1].

When n is made arbitrarily large, for any specified E and M we will have

lim If(t) - Bn(t)I < 2e (18)
n -p.

This proves the uniform convergence of the sequence as stated in the theorem

of Weierstrass.

The following remarks seem to be of some pertinent interest.

1. The proof of the above theorem suggests the inequality

If(t) - Bn(t0 < + M (19)
Fn4

where

nm Max jf(t) - f(7)j (20)

It is also possible to find sharper inequalities.

2. It appears that the now well-known methods employed by A. Feinstein,
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C.E. Shannon and J. Wolfowitz for proving the fundamental channel capacity

theorem of information theory are in a certain sense similar to those employed

for proving the theorem of Weierstrass. In both instances, certain inequalities

are developed between specified e, 5 and a desired n- the inequalities give

quantitative measures for estimating how fast the employed method approaches

the ideal behavior. As an immediate example consider and compare the following

theorems due to Popoviciu 5 and Wolfowitz respectively, a) If f(t) is a

continuous function in [0,1] and w(8) the modulus of continuity of f(t),

then there exists a Bernstein polynomial B n(t), such that for sufficiently

large, n,

If(t) - B n(t) 1 : k w(i/,I-n) (21)

where k is a constant.

b) There exists a code book containing at least N words of length n

such that for any arbitrary specified probability of error %.O < % < 1);

there is a decoding scheme with a uniform error probability % and N > exp (nC - k/)

where k is a constant depending on X but not on channel capacity C

(see Ref. 1, page 421).

that

One of the communication problems of interest appears yet unsolved

is the following problem originated in the field of reliability.

Let S be a system of interconnected elements which is supposed to

function between two node terminals A and B. We assume a certain 'flow'

say flow of electric current between A and B. A question which was asked

and adequately answered in the literature [see for instance 6 and 7] is the

determination of the reliability function h(p) for that system knowing



that every element has a reliability of operation 0 < p < 1. The following

properties of h(p) are well-known.

1) h(O) =0

2) h(l) 1

3) 0 h(p) <1

4) h(p) is a monotonically increasing function in the closed interval [0,1].

5) The equation h(p) can have at the most one real root in the interval

0 < p < 1

Questions dealing with realizability are generally quite complex. The

field of probabilistic networks makes no exception to this statement. Given

a reliability function h(p) real for real p and satisfying all the above

five conditions is it always possible to find a system S such that its

r eliability function approaches h(p) as close as desired? While the writer

knows of no formal proof for this theorem, a positive answer to the question

is conjectured here.

The aforementioned theorem guarantees that the specified h(p) function

can be synthesized in terms of Bernstein polynomials with sufficiently

large n,

n

B (p) (n) pk (l - P)nk f(k/n) (21)

k=O

in the sense described earlier. There are two main difficulties before an

existence realizability proof can be even outlined: In the first place,

for a realizable discrete system, (n) f(k/n) must be an integer for all

integral values of k between 0 and n. In the second place, even assuming

that the letter numbers have all integrals values it is not clear at all

whether all integral coefficients thus derived can collectively be presented by a



linear graph. Of course, for any specified graph, there is a definite

relationship between number of paths of K elements long (of length k)

between nodes A and B.

The first of these difficulties can be removed, for instance, in the

light of the work of Russian mathematicians M.I. Chlodovsky [81 and

L.V. Kantorowich [9]. Chlodovsky has proved that the Weierstrass theorem

can be alternatively approached by Bernstein-like polynomials with integral

coefficients, that is

n-1 n-k

C (t) = f[() q ] tk(1 _ t) (22)

k=l

The bracketed numbers [ ] stands for the largest integer written in the

bracket. Therefore

lim [h(p)- C (P)l -p (23)
n -- %on

The second difficulty appears to be a more serious one at this time. While

no specific proof is presently available to support or to contradict the

aforementioned conjecture, it is hoped that we have called attention to

an important problem and the existence of a suitable tool for handling

problems of this sort. More investigation seems to be desirable in this

area.
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A NOTE ON RELIABILITY FUNCTIONS

Part III

INTRODUCTION

This communication is based on a talk delivered before 
the 2n d

International Congress on Cybernetics. The object of the talk was two

fold. The first objective was to present a discussion before the Congress

of a significant contribution recently made to the Theory of Probabilistic

Networks in the United States [2]. The second objective was to supplement

the work of reference [21 with some observations and theorems which might

prove of interest in the future development of the subject.

Subsequent to some original suggestions of the late J. Von Neumann,

in a series of lectures given at California Institute of Technology in

1952 [7], Drs. E.F. Moore and C.E. Shannon established the basis for a

new area of research in the field of Communication Engineering. In fact,

their paper "Reliable circuits using less reliable relays" established

the basic rules for studying probabilistic networks. The work of reference

[2] may in the future be considered a parallel to the instigation of

developments in the field of switching circuits brought about by reference

[6].

The present note does not include a summary of Shannon-Moore's

fundamental work, as presented in the original talk to the Congress. This

note is mainly confined to the second objective of the talk. In section 2,

we shall discuss the concept of h(p) functions as introduced by Von Neumann,

Moore and Shannon. Section 5 offers the writer's proof of the Shannon-Moore

SSeptember 3-10, 1958, Narnur, Belgium.
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expansion theorem. An extension of the latter theorem is given in section 4.

Section 5 presents an additional theorem on necessary conditions of realiza-

bility, and emphasizes an unsolved central problem of this field. A tie between

Reliability Functions and Positive Real Functions is introduced. Certain

formulae concerning the interrelationships of the coefficients of Reliability

Functions for series, parallel and composition of networks have been developed

along with some bounds for these coefficients.

Reliability Functions

We shall consider a connected network N with n branches and two

terminal nodes A and B. For instance N may be the graph of an equipment

with n components. The node A receives what is called the input and the

node B transmits the output of the system. In a physical sense we tacitly

assume a "flow" of some sort in the network, that is, we postulate that

the operation of the system requires the functioning of a set of connected

branches (components) between nodes A and B. Our major problem is to study

the reliability of such a system in terms of the reliability of its components.

In other words if the probability of the operation of the branch k (assumed

to be independent of the probability of operation of any other branch) is

denoted by pk' find the probability of the operation of the system:

h(p1, P2 )' ' ' Pn) (1)

Evidently for a finite lumped network the reliability function (1) is a

polynomial of degree n with integer coefficients. Furthermore:

h(O,O,O, . . . O) = 0 (2)
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h~l~l1, l = 1(3)

O<h<l (4)

when all pk's remain between zero and one.

The principal theoretical problems in this field seem to encompass

a thorough study of the function h(p), that is, an analysis and a synthesis

of Reliability Functions. The fact that we are dealing with the probability

of the operation of each component and the graph of the system suggests that

the above problem can be formulated as a problem of linear graphs where a

probability weighting function is associated with each branch. In other

words, from a theoretical stand point, the reliability study of the

servomechanism incorporated in an automatic milling machine and the study

of the reliability of an electronic computer in a missile are basically

the same. In both cases, the nature of the interconnection of the compo-

nents (the graph) and the weighting function associated with each branch

completely determine the reliability of the system. The same mathematical

tools and procedures apply in both cases. The observation is rather impor-

tant since it might assist in reducing the enormous technical literature

of the subject to a handful of fundamental procedures •

In the present paper, following Shannon and Moore, we generally

confine ourselves to the simplest case where:

Pk = p  k = 1, 2,.. .n,

Let Ek be the event that the network operates between nodes A and B when
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a set consisting of k connected branches operate properly and the n-k

remaining branches fail to function. The event E of the operation of the

system between A and B is given by:

n
E = E Ek  (5)

k-l

Of course the event Ek may occur in a number of Ak distinct but equivalent

ways. For example, in Figure 1, the event E2 can occur in three distinct

ways:

(1-2, 3-2, and 4-5)

Thus, A2 = 3.

^2 2

A B

FIG. I
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The probability of the successful operation of the network under the event

Ek is:

n-k

Pr(Ek) A p(l - p k) (6)

Since the E k's are mutually exciusive subsets of E, then:

n n k n-k

h(p) = P r(E) = y P rk(Ekk Z AP(l- P (7)k=l k=1

This is the formula suggested in reference (2]. The following properties

of h(p) are known:

1. h(0) 0 (8)

2. h(1) 1 (9)

3. 0 < h(p) < 1 (10)

4. h(p) is a monotonically increasing function in the interval

0 < p < i (ii)

5. h(p) = p can have at the most one real root in the interval

o < <_ (12)

0

FI G. 2
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An Expansion Theorem

An interesting expansion theorem has been employed by Shannon-Moore (2].

The theorem permits the derivation of h(p) of a complex network containing

n branches from the reliability functions of two associated networks, each

having n-i branches between the same input-output terminals. Along with

the above set-theoretic explanation the following proof for the Shannon-Moore

theorem is suggested. We shall divide the set of events E ks in two

categories, those whose occurrence requires the inclusion of the following

subevent: "The events requiring the functioning of a particular branch b"

and "those events which are not contingent on the functioning of the branch b".

These two subsets of E are respectively denoted by X and Y. Evidently if

the occurrence of a pa'ticular event E. requires the functioning of the

branch b, then E. CX. If E. does not require the functioning of the branch

b, then it will require the failure of that branch, thus E. CY. Each3

member of the set X is a set product containing the event of the operation

of the branch b. This event will be denoted by Q. Therefore:

x = QYo (13)

Y = Q'Yo (14)

E= X + Y = QX+ Q (15)

The probabilities associated with the two mutually exclusive sets of

equation (15) satisfy:

P(E) = Pr(QXo ) + Pr(QYo )  (16)

Pr(E) = P r(Q)P r(XO) + Pr (Q')Pr(Y )  (17)

By letting:
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Pr(X0 ) = (p) (18)

p (Y ) - g(p) (19)

One obtains:

h(p) = pf(p) + (1 - p)g(p) (20)

The network interpretation of this equation can be given as follows. Any

event x0 C X0 implies that the network N operate3 between tr e nodes A and B

only via branch b. That is if the two nodes across the branch b are shorted

we obtain a graph with reliability function f(p) between n)des A and B.

Similarly any y0 C Yo implies that the network N operates between nodes

A and B while the branch b is removed. That is if th2 bra11ch .I- r-emoved

from N, there remains a connected network with a reliability t_ nc-rI n h(p)

between nodes A and B. Based on this proof, the Shannon-Moore theorem

can be summarized as below:

---Short circuit a particular branch b, compute ffp);

---Remove the branch b compute g(p);

---Obtain h(p) from equation (20).

The equation (20) gives an expansion rule for the network reliability

function in terms of the reliability of one of itc branches and the

remainder network. This theorem is perhaps similar to the familiar

Th~venin theorem of electrical circuits.

A more analogous situation can be brought in focu6 by considering

a linear transformation of an impedance load z by an )'rdi.nary two-port.

The input impedance of the network of Figure 3a is:
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Az + B
Z(s) = Cz + D (21)

where (A,B,C,D) are the transmission function associated with the two-port

and s the familiar complex frequency.

Figure 3a Figure 3b

In this classical network approach, we are essentially expanding

a driving-point impedance function Z in terms of the impedance of a

particular branch and systems functions associated with the remainder of

the network evaluated at the terminals of the same branch. Similarly the

Shannon-Moore theorem gives an expansion formula for h(p) in terms of the

branch under consideration and the reliability functions associated with

the terminals of the said branch. As an example of the application of this

theorem, one may compute the function h(p) associated with AB of the bridge

network of Figure 4.

f(p) = 4p2(1 _ p)2 + 4p3(l _ p) + P 4 = P 4p 3 + 4p2

2 2 34 4 2
g(p) -2p(1-p) +4p(l-p) +p -p +2p

h(p) -- pf+ (1-p)g2p 2+ 2p3 5p4 + 2
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ABc: B

Figure 4

An Extension of Shannon-Moore Theorem

The above expansion theorem appears to be a source for generation of

other interesting theorems. For instance if one wants to expand the

reliability function h(p) associated with a network N in terms of the

branches 1 and 2, one may first write:

h= flpl + (1 - pgl (22)

Now f1 and gl in turn can be expressed in terms of expansions of f and

l about a branch with reliability p2; we find:

fl = f 22 + (l - P2)g2l (23)

9l = f 22P2 + (1 - p2 )g2 2 (24)
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Finally for the case p1 = P2 = p

h = f2 1p
2 + p(l - p)(f2 - g21 ) + (l -p)2 g22  (25)

The interpretation of this formula is straight forward:

f2l Reliability function when branch 1 and 2 are shorted;

f22 Reliability function when branch 1 removed and 2 shorted;
922 Reliability function when branch 1 shorted and 2 removed;

922 Reliability function when branch 1 and 2 are removed.

This result can be graphically interpreted by the tree diagram of

Figure 5.

?2.

Figure 5

The over all probabilistic length of the trees to the right of each

node gives a pertinent expansion rule. For example for the node h we

have:

h = pfl + (l - pl)gl = pl[p 2f21 + (l - p2 )g21 ] (26)

+ (l - pl) [p2f22 + (1 - p2)g22 1
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This procedure can be extended in a direct fashion to a general expan-

sion theorem for obtaining the reliability function in terms of reliability

functions associated with closing and removal of any combination of a

number of specified elements.

An equivalent analytical formulation can be obtained from the following

relations:

h =-[f1 ,g 1 ] [ Pl] (27)

[flvgllt f [ 2 1  g21  F 2 (28)

f22 g22  [1 p 2J
t -

P2 t [f21  g2 1  P 21 f2 P
h 1  2  f 

2 2  1 P2 2 -

Other equivalent formulation and generalization of the relation (29) are

possible. This will not be undertaken at present.

Realizability

From an academic point of view, perhaps the most needed theory in the

field of probabilistic networks is a theory describing the necessary and

sufficient conditions for a function h(p) to be the reliability function of

a discrete network. To mention an analogy, the significant development of

the field of network synthesis is primarily due to the introduction of the

concept of Positive Real Functions, or what is commonly known driving-point

impedance functions. Given a one-port linear network we associate with it

a driving-point impedance function Z(s). The function Z(s) is analytic in

the right half-plane and such that:
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Re Z(s) > 0 for Re s > 0

Z(s) is real on the real axis.

Conversely, given a function Z(s) satisfying the above conditions, we may

find a network N having Z(s) for its driving-point impedance function. The

central question of realizability of h(p) functions is admittedly a difficult

one. A method for describing this class of functions and testing if a function

belongs to that class has not been suggested in the literature. The following

is hoped to be a step in that direction.

A tentative sketch of a fundamental theorem in the field can be made

by exploiting the strong constraint of the monotonically in-reasing charac-

ter of the reliability function. We shall first transform the interval

(0,1) onto the interval (0,2A). Then we shall translate the constraint

of monotonically increasing into a condition on the coefficients of the

Fourier series expansion of the new function. This will provIde a link

between the realizability problem and the theory of Harmonic Functions.

Finally we will attempt to make a connection between the realizability

of probabilistic networks and the realizability of deterministic networks

i.e. a tie between h(p) and Positive Real Functions.

Let:

x (50)
P = 2-(30

This transformation transforms the interval 0 < p < 1 onto 0 , x < 2g.

We may now consider a periodic function O(x) which coincides with the

function h ( -) in the interval 0 < x < 2A. This function can be expanded
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in a Fourier series:

0(s) -2 + jkx + ik - ) (31)

k=l

where:

C0 = - ja0

Ck = bk -ja k

0k = bk + Jak

C_ =- b -ja (32)

Now the following central theorem can be established.

1. Theorem.

A set of necessary conditions for a given function h(p), real on the

real axis, to be a permissible reliability function are:

1. h(O) = 0 , h(l) = 1

2. 0 < h(p) < 1 for 0 < p <

3. h(p) = p has at the most one positive real root in:

O<p<l

4.F~) (C n + 1 C n - 1 Cn )zn (34J. F(z) = 7' n n 2 Cn ) n (33)
n 2 C~l 2 iv-l

n=O

has a positive real part in the unit circle.

2. Proof.

Conditions (1) and (2) are self evident. Condition (3) has been

obtained by Shannon-Moore in reference [2]. An elaborate procedure is

required to show that condition (4) constitutes the contribution of

this note. A detailed account would require much time and

space. However a summary of the proof will be given below. The
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following theorem has been proved by Herglotz [1][8][9].

Every function regular in the interior of the unit-circle and with

real part non-negative in the unit-circle can be represented as:

C % d (m) + K (34)

where *(a) is a non decreasing bounded function, K a pure imaginary constant

and the integral taken in the Stieltges sense.

It is a matter of using appropriate transformations in order to derive

a theorem equivalent to Herglotz theorem for functions analytic in the right

half-plane and with positive real part in the right half-plane.

Applying the transformation:

y cot x (35)
2

one finds:
2

Cos 2(36)

y +1

sin x = 2 (37)2
y +1

eJX Y i (38)
y+ j

-ix = + (39)
e Y - .j

a C k k
f(Y) 2 + Y+ + + (4o)

2 k=l ky+jky -j

Subsequent to the application of a number of transformations primarily

for applying the Herglotz theorem, one finds that the function:

n (nC - n + C 1  n - 1  )zn (41)o n 2 n1 2 1
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has positive real part in the unit circle jzj < 1. This result is based

upon the derivation of the function d 01(x) and inserting it in the appropriate

equivalent form of Herglotz integral and then obtaining the residues. This

shows the necessity of the condition.

The sufficiency of the above condition for monotonically increasingness

of h(p) can be also proved, following a number of involved procedures, from

the converse property of Herglotz theorem. That is, the condition (4) is

sufficient in order to lead to a monotonically increasing h(p). It does

not formally follow from this that the obtained function h(p) will correspond

to a realizable network.

While the above theorem is of no practical significance it has certain

interesting impacts. In fact, with a further constraint of F(z) = F(-z) the
1-s

function F(z) can easily lead to a function Z(s) = F(z -1 _ S), which is

a Positive Real Function. Thus the suggested theorem has a curious property

of relating the reliability functions of probabilistic networks to the

impedance functions of the familiar circuit theory.

A number of relationships between coefficients Ak's of the reliability

function of the series, parallel or composition of networks have been obtained

by F. Moskowitz, S. Jutila, and this writer. These are given in references

[3] and [4]. Also certain upper bounds for coefficients Ak and some inequalities

for reliability functions have been obtained. This will be presented at

a later date.
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Part IV

Nearly Gaussian Channels

We have formulated and studied the following problem for transmission

of information in "nearly normal channels".

Let F(x) be the C.D.F. of a "nearly normal distribution", that is

tt
2

_F x f e 2 dt I< e

0O< E < 1 -< x <

The output of this source is transmitted through a nearly normal

channel in the presence of the same type of additive noise. The main

problem is to obtain some bounds on the entropy of nearly normal sources

and channels, and then capacity.

This problem is far too complex and requires more time for future

investigation. So far, we have employed methods of inquiry similar to

Gram-Charlier Series of orthogonal expansion. Also we have used theorems

describing certain distances between characteristic functions of two

distributions. For instance let f(x) and g(x) be two distibution functions;

F(t) and G(t) their respective characteristic functions such that F(t)

coincides with G(t) on the interval Itl < L. Then one can prove that

the deviation of f(x) and g(x) must satisfy an interesting inequality.

f. If(x) - g(x) dx < L

A similar bound for the entropies has been under investigation.
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